
Danick Briand Exercices CdM1 Série 4b 

 
 

Conception de Mécanismes I - 2024 Page 1 of 15 © EPFL-STI-SMT 

Série 4b Solutions 

Question 4b.1 – Maximal in plane shearing stress 

We consider a material for which it is known that failure is due to shear stress, and its maximal shear 

stress before failure (shear yield stress, 𝜏𝑦𝑖𝑒𝑙𝑑) has been measured to be 75 MPa. A mechanical piece 

made of this material is submitted to the plane stresses shown in Figure 4b.1. 

Determine the values of σy for which material failure due to maximum shear stress is observed. 

 

Figure 4b.1 – State of stress on a 2D element with unknown σy 
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Solution 4b.1 

Objectives – what is asked? 

 The normal stress in the y direction at material failure due to shear stress 

What is given? 

A state of stress, where the normal stresses in x (σx = 60 MPa) and the shearing stress (τxy = 20 

MPa) are known. 

The maximum shearing stress before failure τyield 

Principles and formulas 

 Maximum in-plane shearing stress: 

  𝜏𝑚𝑎𝑥 = √(
𝜎𝑥 − 𝜎𝑦

2
)

2

+ 𝜏𝑥𝑦
2  (1) 

We know that failure happens due to shearing, and the shearing stress related to failure is known 

as well, so we set: 

 𝜏𝑚𝑎𝑥 = 𝜏𝑦𝑖𝑒𝑙𝑑  (2) 

From this, we solve for σy: 

 (
𝜎𝑥 − 𝜎𝑦

2
) = ±√𝜏𝑦𝑖𝑒𝑙𝑑

2 − 𝜏𝑥𝑦
2  (3) 

 𝜎𝑦 = 𝜎𝑥 ± 2√𝜏𝑦𝑖𝑒𝑙𝑑
2 − 𝜏𝑥𝑦

2  (4) 

Calculation 

 𝜎𝑦,𝑚𝑎𝑥 = 60 ± 2√752 − 202 = {
−84.57 𝑀𝑃𝑎
 204.57 𝑀𝑃𝑎

  (5) 

 Yield due to shearing stress will happen for values of 𝜎𝑦 lower than −84.57 𝑀𝑃𝑎 and larger 

than 204.57 𝑀𝑃𝑎. 
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Question 4b.2 – Axial load on glued joint 

Two members of uniform cross section 50 x 80 mm are glued together along plane ‘a-a’ that forms an 

angle of 25° with the horizontal x-axis (Figure 4b.2). We consider that the material of the beam is tough 

and does not break, and expect failure in the glued joint instead. We know that the yield stresses for the 

glued joint are different for the normal stress on the joint (𝜎⊥,𝑦𝑖𝑒𝑙𝑑) and for the shearing stress parallel 

the joint (𝜏‖,𝑦𝑖𝑒𝑙𝑑). They are respectively 𝜎⊥,𝑦𝑖𝑒𝑙𝑑 = 800 kPa and 𝜏‖,𝑦𝑖𝑒𝑙𝑑  = 600 kPa.  

Determine the largest centric load F that can be applied before failure in the glued joint (we 

consider it a 2D problem). 

 

 

Figure 4b.2 – Vertical load on a glued joint 

 

  

F 
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Solution 4b.2 

Objectives – what is asked? 

Determine the maximal load F that can be applied before the stresses in the joint surpasses the 

allowable stresses  

What is given? 

The dimensions of cross-section: 50 x 80 mm 

The angle of the joint with respect to the horizontal: 25° clockwise 

The allowable stresses for the joint (normal stress 𝜎⊥,𝑦𝑖𝑒𝑙𝑑 = 800 kPa and shear stress 𝜏‖,𝑦𝑖𝑒𝑙𝑑  = 600 

kPa) 

Principles and formulas 

Consider the formulas for the rotation of stresses on an element: 

 

𝜎𝑥′ =
𝜎𝑥 + 𝜎𝑦

2
+

𝜎𝑥 − 𝜎𝑦

2
𝑐𝑜𝑠(2𝜃) + 𝜏𝑥𝑦 𝑠𝑖𝑛(2𝜃) 

𝜎𝑦′ =
𝜎𝑥 + 𝜎𝑦

2
−

𝜎𝑥 − 𝜎𝑦

2
𝑐𝑜𝑠(2𝜃) − 𝜏𝑥𝑦 𝑠𝑖𝑛(2𝜃) 

𝜏𝑥′𝑦′ = −
𝜎𝑥 − 𝜎𝑦

2
sin(2𝜃) + 𝜏𝑥𝑦 cos(2𝜃) 

 

(1) 

The normal stress on a section A with an applied load F is simply given by: 

 𝜎 =  
𝐹

𝐴
 (2) 

Calculations 

The first step is to determine the state of stress of an element oriented in the x-y axes. Only a normal 

tensile force in y is applied to the system, therefore the state of stress can be written as follows: 

 {

𝜎𝑥 = 0
𝜎𝑦 = 𝐹/𝐴

𝜏𝑥𝑦 = 0
 (3) 

The next step is to determine the angle with which to rotate this element to obtain the normal 

stresses and the shearing stresses in the joint. This can be looked at two ways. Consider the drawing 

below: 
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If the element is rotated -25°, the normal stress on the joint will be 𝜎𝑦′ and if the element is rotated 

65° the normal stress on the joint will be 𝜎𝑥′. The shearing stress on the joint will be 𝜏𝑥′𝑦′ in both cases, 

only the sign will change. Let’s consider 𝜃 = −25° for the calculations that follow.  

 
𝜎⊥,𝑦𝑖𝑒𝑙𝑑 = 𝜎𝑦′ =

𝜎𝑥 + 𝜎𝑦

2
−

𝜎𝑥 − 𝜎𝑦

2
𝑐𝑜𝑠(2𝜃) − 𝜏𝑥𝑦 𝑠𝑖𝑛(2𝜃) 

 
(4) 

Using the stresses from eq (3) we can simplify this equation. 

 𝜎⊥,𝑦𝑖𝑒𝑙𝑑 =
𝐹

2𝐴
(1 + cos(2𝜃)) (5) 

Therefore, the maximum load F before failure due to normal stress on the joint is: 

 𝐹𝑚𝑎𝑥,𝜎 =
2𝜎𝐴

1 + cos (2𝜃)
  (6) 

The same calculations are done for the shear stress (from eq (1)): 

 𝜏‖,𝑦𝑖𝑒𝑙𝑑 = 𝜏𝑥′𝑦′ = −
−𝐹

2𝐴
sin(2𝜃) (7) 

 𝐹𝑚𝑎𝑥,𝜏 =
2𝜏𝐴

sin (2𝜃)
 (8) 
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Numerical application 

For the normal stress: 

𝐹𝑚𝑎𝑥,𝜎 =
2 ∗ 800 ∗ 103 ∗ (50 ∗ 10−3 ∗ 80 ∗ 10−3)

1 + cos (2 ∗ −25°)
= 3896 𝑁 (9) 

For the shearing stress: 

 𝐹𝑚𝑎𝑥,𝜏 =
2 ∗ 600 ∗ 103 ∗ (50 ∗ 10−3 ∗ 80 ∗ 10−3)

sin (2 ∗ −25°)
= −6266 𝑁 (10) 

Note: a force in compression is found to cause a shear in that direction, and a tensile load would 

create a shear in the opposite direction but with the same magnitude. In any case, a load of smaller 

magnitude is found to cause failure due to normal stress in the joint (eq (9)). In consequence, the 

maximal allowed load on this joint is F=3896 N.  
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Question 4b.3 – Tilted strain gauge 

An Aluminum plate with Young modulus 𝐸 = 72 GPa and Poisson’s ratio 𝜈 =  0.33 is loaded in 

biaxial stress by normal stresses 𝜎𝑥 and 𝜎𝑦 (see Figure 4b.3 below). A strain Gauge is bonded to the plate 

at an angle of 21° . The stress 𝜎𝑥 = 86.4 MPa. The gauge factor of the strain gauge is 𝐺𝐹 = 50. The 

relative electrical resistance variation observed is 47.3 · 10−3. 

𝐺𝐹 =  
1

𝜀𝑎𝑙𝑜𝑛𝑔

Δ𝑅

𝑅
 

 

(a) What is the maximum in-plane shear-stress 𝜏𝑚𝑎𝑥? 

(b) What are the axial strain parameters along x,y and z? 

 

Figure 4b.3 – Strain gauge on a 3D element  
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Solution 4b.3 

Obectives – what is asked? 

 The maximum in-plane shear stress 

 The axial strain parameters along 𝑥, 𝑦, 𝑧 

What is given? 

Young’s modulus 𝐸 = 72 GPa  
Poisson’s ratio 𝜈 =  0.33 

Resistance relative variation 
Δ𝑅

𝑅
= 47.3 · 10−3  

Gauge Factor 𝐺𝐹 = 50 
Stress submitted to along x-direction 𝜎𝑥 = 86.4 MPa 
Angle of strain gauge 𝜙 = 21° 

Principles and formulas 

We give the three dimensions Hooke’s law for the strain in the 𝑥 direction 

𝜀𝑥 =
1

𝐸
(𝜎𝑥 − 𝜈(𝜎𝑦 + 𝜎𝑧)) (1) 

Where, 𝐸 is the Young’s modulus of the material, 𝜈 is the Poisson’s ratio. 𝜖𝑥 is the axial strain in the 

x-direction, and  𝜎𝑥 is the normal stress parallel to the x-axis. The Gauge’s factor definition is given by :  

𝐺𝐹 =  
1

𝜀

Δ𝑅

𝑅
  (2) 

Where 𝜀 is the strain acting in the direction of the strain gauge. 
Δ𝑅

𝑅
 is the relative resistance variation. 

Calculations 

The strain in the direction of the strain Gauge is given by 

𝜀𝑥′
=  

1

𝐺𝐹

Δ𝑅

𝑅
  (3) 

where: 

𝜀𝑥′ =
𝜀𝑥 + 𝜀𝑦

2
+

𝜀𝑥 − 𝜀𝑦

2
cos(2𝜙) +

𝛾𝑥𝑦

2
sin(2𝜙) (4) 

To determine 𝜀𝑥 and 𝜀𝑦, we use generalized Hooke’s law. 𝜎𝑍 = 0, so we do not consider its 

contribution. 

𝜀𝑥 =
1

𝐸
(𝜎𝑥 − 𝜈𝜎𝑦) (5) 

𝜀𝑦 =
1

𝐸
(𝜎𝑦 − 𝜈𝜎𝑥) (6) 

There is no shear strain along the (𝑥𝑦) plane (biaxial stress along 𝑥 and 𝑦), meaning 𝛾𝑥𝑦 = 0 . Then 

using Equation (4), 

𝜀𝑥′ =
1

2𝐸
[𝜎𝑥(1 − 𝜈 + (1 + 𝜈) cos(2𝜙)) + 𝜎𝑦(1 − 𝜈 − (1 + 𝜈) cos(2𝜙))] (7) 
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Then, we manipulate this equation in order to extract 𝜎𝑦 

𝜎𝑦 = −
𝜎𝑥(1 − 𝜈 + (1 + 𝜈) cos(2𝜙))

(1 − 𝜈 − (1 + 𝜈) cos(2𝜙))
+ 2𝐸

𝜀𝑥′

(1 − 𝜈 − (1 + 𝜈) cos(2𝜙))
 (8) 

The maximum in-plane shear stress is extracted from the latter formula:  

𝜏𝑚𝑎𝑥 =
𝜎𝑥 − 𝜎𝑦

2
 (9) 

Every term of this last formula being known, we compute them in order to obtain the latter 

equation. 

𝜏𝑚𝑎𝑥 =
𝜎𝑥 − 𝜎𝑦

2
=

𝜎𝑥

2
+

1

2
(

𝜎𝑥(1 − 𝜈 + (1 + 𝜈) cos(2𝜙))

(1 − 𝜈 − (1 + 𝜈) cos(2𝜙))
− 2𝐸 ∗

1
𝐺𝐹

ΔR
R

 

(1 − 𝜈 − (1 + 𝜈) cos(2𝜙))
) (10) 

 

𝜀𝑥 =
1

𝐸
(𝜎𝑥 − 𝜈𝜎𝑦) (11) 

𝜀𝑦 =
1

𝐸
(𝜎𝑦 − 𝜈𝜎𝑥) (12) 

𝜀𝑧 =
1

𝐸
(−𝜈(𝜎𝑥 + 𝜎𝑦)) (13) 

Numerical application 

  

𝜏𝑚𝑎𝑥 = 32.1 MPa (14) 

  

𝜀𝑥 = 1.10 · 10−3 (15) 

𝜀𝑦 = −88 · 10−6 (16) 

𝜀𝑧 = −497 · 10−6 (17) 
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Question 4b.4 – Temperature change in beam 

Part 1:  

A beam, clamped of both ends, with a square cross section, shown in Figure 4b.4 (Part 1), has a 

Young’s Modulus 𝐸 = 200 GPa, coefficient of thermal expansion 𝛼 = 10−6 K−1, thickness ℎ0 = 1 cm and 

length 𝐿 = 1 m. The longitudinal yield stress of the beam is |𝑦𝑖𝑒𝑙𝑑  |= 30 MPa and the shear yield stress 

|𝜏𝑦𝑖𝑒𝑙𝑑| = 10 MPa. The beam undergoes a positive ∆𝑇. 

(a) What is the necessary ∆𝑇 to have material failure due to longitudinal stress? 

(b) The failure will be due to compressive or tensile stress?  

(c) For a given temperature change Δ𝑇, what is the maximum shear stress and the angle of 

rotation 𝜃 at which this shear stress is found?   

(d) What is the necessary ∆𝑇 to have material failure due to shear stress?  

 

Part 2:  

The beam is now only clamped on one end and undergoes also a force 𝐹 applied in the middle point, 

as shown in Figure 4b.4 (Part 2). 

(e) If Δ𝑇 = 50 K, what is the maximum force 𝐹 before failure?  

(f) Is that failure due to longitudinal or shear stress? 

(g) How much is the total elongation of the bar just before failure? 

 

 

  

 

Figure 4b.4 – Part 1: Temperature change in a beam clamped on both ends – Part 2: 

Temperature change in a beam clamped on side with an applied load F 
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Solution 4b.4 

Part (a) 

In general, the total strain in the beam is equal to: 

 𝜀𝑇𝑂𝑇 = 0 = 𝜀𝑡ℎ + 𝜀𝑚𝑒𝑐ℎ → 𝜀𝑚𝑒𝑐ℎ = −𝜀𝑡ℎ (1) 

Therefore, the longitudinal stress in the beam is equal to: 

 𝜎𝑚𝑒𝑐ℎ,𝑙𝑜𝑛𝑔 = 𝐸𝜀𝑚𝑒𝑐ℎ = −𝐸𝛼Δ𝑇 (2) 

To have failure, the longitudinal stress must be equal to or larger than the longitudinal yield stress. 

With this, we can find the positive temperature change to induce material failure in compression: 

 𝜎𝑚𝑒𝑐ℎ,𝑙𝑜𝑛𝑔 = −𝜎𝑦𝑖𝑒𝑙𝑑 → Δ𝑇 =
𝜎𝑦𝑖𝑒𝑙𝑑

𝐸𝛼
 (3) 

Final Answer: 

 
Δ𝑇 =

30𝑀𝑃𝑎

200𝐺𝑃𝑎 ∗ 10−6
=

30000

200
= 150 K 

 

(4) 

Part (b) 

Compressive due to the positive change in temperature and positive coefficient of thermal 

expansion. 

Part (c) 

We know the formula for shear stress on a coordinate system at an angle 𝜃 to the original 

coordinate system: 

 𝜏𝑥′,𝑦′ =
𝜎𝑥 − 𝜎𝑦

2
sin(2𝜃) + 𝜏𝑥𝑦 cos(2𝜃) (5) 

 Because we have no shear stress nor stress in the y direction, this simplifies to: 

 𝜏𝑥′,𝑦′ =
𝜎𝑥

2
sin (2𝜃) (6) 

Thus the maximum and minimum shear angles are: 

 𝜃 = ±45º = ±
𝜋

4
. (7) 

The maximum and minimum shear stresses are equal to: 

 𝜏𝑀𝑎𝑥,𝑀𝑖𝑛 = ±
𝜎𝑚𝑒𝑐ℎ,𝑙𝑜𝑛𝑔

2
= ±

𝐸𝛼Δ𝑇

2
 (8) 

Part (d) 

In the same fashion as Part (a), we can find the change in temperature necessary to induce material 

failure due to shear stress. We use the equation found for the shear stress in Part C, equate it to the shear 

yield stress and solve for Δ𝑇: 

 𝜏𝑀𝑎𝑥,𝑀𝑖𝑛 = 𝜏𝑦𝑖𝑒𝑙𝑑 → Δ𝑇 =
2𝜏𝑦𝑖𝑒𝑙𝑑

𝐸𝛼
 (9) 

Final Answer: 

 Δ𝑇 =
20𝑀𝑃𝑎

200𝐺𝑃𝑎 ∗ 10−6
=

20000

200
= 100 K (10) 



Danick Briand Exercices CdM1 Série 4b 

 
 

Conception de Mécanismes I - 2024 Page 12 of 15 © EPFL-STI-SMT 

Part (e) and (f) 

The temperature does not generate stress, so the stress is only generated by the force: 

 𝜎𝐹 =
𝐹

𝐴
→ 𝐹𝑀𝑎𝑥 = 𝜎𝑦𝑖𝑒𝑙𝑑𝐴 (11) 

Failure can be due to either shear stress or longitudinal stress. 

 𝐹𝑙𝑜𝑛𝑔,𝑀𝑎𝑥 = 𝜎𝑦𝑖𝑒𝑙𝑑𝐴 = 30 𝑀𝑃𝑎 · 10−4𝑚 = 3 𝑘𝑁 (12) 

 𝐹𝑠ℎ𝑒𝑎𝑟,𝑀𝑎𝑥 = 𝜏𝑦𝑖𝑒𝑙𝑑2𝐴 = 20 𝑀𝑃𝑎 · 10−4𝑚 = 2 𝑘𝑁 (13) 

Failure will be due to shear stress. 

Part (g) 

The total elongation of the beam will be due to both the change in temperature and the applied 

force. Using the definition of strain and solving for the change in length: 

 Δ𝐿𝑇𝑂𝑇 = Δ𝐿𝐹 + Δ𝐿𝑇ℎ (14) 

 Δ𝐿𝑇ℎ = 𝛼Δ𝑇𝐿 (15) 

 Δ𝐿𝐹 =
𝐿

2

𝐹𝑀𝑎𝑥

𝐸𝐴
 (16) 

 Δ𝐿𝑇𝑂𝑇 = Δ𝐿𝐹 + Δ𝐿𝑇ℎ =
𝐿

2

𝐹𝑀𝑎𝑥

𝐸𝐴
+ 𝛼Δ𝑇𝐿 =

10−4

2
+ 5 ∗ 10−5 = 0.1 mm (17) 
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Question 4b.5 – Von Mises criterion and safety factor 

The state of plane stress shown in Figure 4b.5 occurs in a machine component made of a steel with 

σyield = 315 MPa (the yield stress of that steel).  

Using the Von Mises criterion, determine whether yield will occur when (a) τxy = 63 MPa, (b) τxy 

= 140 MPa. If yield does not occur, determine the corresponding Safety Factor (SFVM). 

 

Figure 4b.5 – State of stress on a 2D element with varying 𝜏𝑥𝑦 
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Solution 4b.5 

Objectives – what is asked? 

 If yield will occur in the material considering the Von Mises criterion (σVM), and if not, the 

corresponding safety factor SFVM 

What is given? 

A state of stress, where the normal stresses in x (σx = 252 MPa, σy = 147 MPa) and the shearing 

stress (τxy = (a) 63 MPa, (b) 140 MPa) are known. 

The yield stress σyield=315 MPa 

Principles and formulas 

The principal stresses: 

 𝜎𝑚𝑎𝑥,𝑚𝑖𝑛 = 𝜎1,2 =
𝜎𝑥 + 𝜎𝑦

2
± √(

𝜎𝑥 − 𝜎𝑦

2
)

2

+ 𝜏𝑥𝑦
2  (1) 

The von Mises criterion in 3D: 

 

 
𝜎𝑉𝑀 =

1

√2
√(𝜎1 − 𝜎2)2 + (𝜎2 − 𝜎3)2 + (𝜎3 − 𝜎1)2 

 

(2) 

The safety factor when using the Von Mises criterion: 

 𝑆𝐹𝑉𝑀 =
𝜎𝑦𝑖𝑒𝑙𝑑

𝜎𝑉𝑀
 (3) 

Calculations 

As a first step, the Von Mises criterion can be simplified to the two-dimensional case by setting σ3=0 

(the third principal stress will be 0 as we are working in the plane): 

 
𝜎𝑉𝑀 =

1

√2
√(𝜎1 − 𝜎2)2 + (𝜎2)2 + (−𝜎1)2 

 

(4) 

 
𝜎𝑉𝑀 =

1

√2
√𝜎1

2 − 2𝜎1𝜎2 +  𝜎2
2 + 𝜎2

2 + 𝜎1
2 

 

(5) 

 
𝜎𝑉𝑀 =

1

√2
√2𝜎1

2 − 2𝜎1𝜎2 +  2𝜎2
2 

 

(6) 

 
𝜎𝑉𝑀 = √𝜎1

2 − 𝜎1𝜎2 +  𝜎2
2 

 

(7) 

Moreover, the principal stresses can be written as: 

 𝜎1,2 = 𝜎𝑎𝑣𝑒 ± 𝑅 (8) 

With:  
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 𝜎𝑎𝑣𝑒 =
𝜎𝑥 + 𝜎𝑦

2
, 𝑅 =  √(

𝜎𝑥 − 𝜎𝑦

2
)

2

+ 𝜏𝑥𝑦
2   (9) 

All variables are known, and we can determinate if yield occurs or not 

Numerical application 

𝜎𝑎𝑣𝑒 =
252 + 147

2
= 199.5 𝑀𝑃𝑎 

(a) Principal stresses and Von Mises stress: 

  𝑅 =  √(
252 − 147

2
)

2

+ 632 = 82.00 MPa (10) 

 
𝜎1 = 199.5 + 82 = 281.5 𝑀𝑃𝑎 

𝜎2 = 199.5 − 82 = 117.5 𝑀𝑃𝑎 
(11) 

 
𝜎𝑉𝑀 = √281.52 − 281.5 ∗ 117.5 + 117.52 =  244.65 MPa < 315 MPa  

 
(12) 

  Failure does not occur for this case, the safety factor is 

 𝑆𝐹𝑉𝑀 =
315

244.65
= 1.3 (13) 

Note: for most applications, this safety factor would still be considered too low. In 

general a safety factor >2 is desirable. 

(b) Principal stresses and Von Mises stress: 

  𝑅 =  √(
252 − 147

2
)

2

+ 1402 = 149.52 𝑀𝑃𝑎 (14) 

 
𝜎1 = 199.5 + 149.52 = 349.02 𝑀𝑃𝑎 

𝜎2 = 199.5 − 149.52 = 49.98 𝑀𝑃𝑎 
(15) 

 
𝜎𝑉𝑀 = √349.022 − 349.02 ∗ 49.98 +  49.982 =  326.91 MPa > 315 MPa  

 
(16) 

  Yield occurs for this case. 

 


